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We report finding a self-consistent electric field of electrons, ions, and dust grains inside an ordered dust
cloud in glow discharge, and show that this field differs radically from that of an isolated grain. Besides, the
screening radius coincides with the size of Wigner-Seitz cell. The value of potential necessary for containing
dust particles in the direction perpendicular to the discharge axis is estimated. We show that the interaction
potential energy of a system of ordered dust grains has a form characteristic of ionic crystals. Critical param-
eters for a liquidlike dust structure are estimated. The correlation function of dust grains obtained via this
approach is compared with the measured function.
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I. INTRODUCTION

Gas-discharge dusty plasma is a partly ionized gas con-
taining micron-sized dust grains with a high negative charge.
Dust grains interact with one another and with plasma par-
ticles to form liquidlike or solidlike ordered structures �1,2�.
Much attention is given in the literature to the search for
effective pair potential describing the interaction between
grains. It is further observed that, when ordinary multicom-
ponent plasma of electrons and ions of different sorts is used
to simulate dusty plasma, it is necessary to take into account
a number of dusty plasma characteristic features �3–7�. One
such characteristic feature is the dependence of the charge of
grains on their concentration and on other parameters of the
plasma. Another feature is the presence of permanent fluxes
of plasma electrons and ions to grains, processes of surface
recombination, and the need for permanent sources of ion-
ization to sustain plasma existence. These sources are sup-
ported by energy input to the discharge. In particular, the
presence of such fluxes results in a variation of the potential
asymptotic at long distances �1–7�. At the same time, in spite
of the abundance of dust plasma studies, the methods and
approaches developed for ordinary multicomponent plasma
are used too infrequently in application to this object. Re-
gardless of the characteristic features mentioned above, a
dust plasma system largely retains the features of multicom-
ponent plasma. Charge grains and electrons and ions of
plasma interact in accordance with the Coulomb law and are
located in a self-consistent field generated by all charges.

In this paper the pair-correlation function of grains in
glow discharge plasma is measured under the conditions
when crystal- or liquidlike ordered dust structures were
formed owing to the presence of some external “confine-
ment” potential. Such structures have been observed over the
last 15 years �1–7�. An adequate theoretical model is devel-
oped for interpretation of these observations and other ex-
perimental data. In the presence of the ordered dust structure,
the solution of the Poisson-Boltzmann equation was obtained
and a self-consistent potential was found. The latter potential
is used to calculate the correlation function and potential
energy of grains. It is demonstrated that the obtained result is
in adequate agreement with the correlation function, mea-
sured here.

In the case when the ratio of mean distance between
grains to ionic Debye radius is large �the screening of grains
by plasma particles is strong�, the potential energy of grains
has a form characteristic of ionic crystals. When this ratio is
small, the potential energy takes an ordinary Debye form,
which is well known in plasma theory. The peculiar depen-
dence of the charge of grains on their density leads to the
emergence of a minimum in the density dependence of po-
tential energy.

The contribution of potential energy to pressure is calcu-
lated, and it is demonstrated that the density dependence of
potential energy has a minimum and two branches. Repul-
sive or attractive forces dominate the branches realized at
high or low densities, respectively. The parameters of the
critical point are estimated for a liquidlike dust structure.

II. BASIC PARAMETERS OF ORDERED DUST
STRUCTURES IN GLOW DISCHARGE PLASMA

The formation of crystal-like or liquidlike dust structures
was observed in the electrode layer of a radio-frequency �rf�
capacitate discharge in argon. The pair �binary� correlation
function given in Fig. 1 was specially measured for the pur-
poses of the present study.

In brief, the experiment was performed in an rf discharge
generated between two flat electrodes operating at a fre-
quency of 13.56 Mhz, and a glow discharge was ignited be-
tween the electrodes in the argon atmosphere. During the
experiment, the vacuum chamber was filled with argon at
pressure Pg�1 mBar. Grains were injected into the plasma
from a special container via an opening in the upper elec-
trode. The macroparticles used were either plastic spheres
1.9 �m in diameter or polydisperse particles �Al2O3�
2–5 �m in diameter. In the discharge, the grains were
charged negatively and levitated in a sheath region above the
lower electrode, where the electric field was strong enough to
balance the gravity.

The video record of the experiment was processed using
custom software which enabled one to identify the positions
of individual particles in the field of view of the video sys-
tem and to construct a binary correlation function �CF� for
each dust-plasma structure obtained. It should be mentioned
that this dust formation was about 5 cm in diameter, about
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1 cm in height, and had a very uniform structure because of
the intensive thermal motion. These facts allowed us to con-
sider this dusty plasma system to be a uniform three-
dimensional �3D� structure. The CF in Fig. 1 is given for the
dust component density Nd=4000 cm−3. Its form is typical of
the ordered state of matter. For example, the first maximum
of CF in Fig. 1 corresponds to the first maximum of CF of
face-centered crystal determined from the relation

R = 21/6/Nd
1/3 � 0.7 mm. �1�

This allows one to assume that each grain is surrounded
by a sphere of radius R on the surface of which 12 nearest
neighbors are located. Assuming that the dust crystal is ideal,
this must be followed by a sphere with six second neighbors
at distance R1=R�2, the third sphere with 24 particles at
distance R2=R�3, and so on. The position of particles is
localized in space, and they are capable only of performing
vibrations in the vicinity of equilibrium positions. The elec-
trons and ions of glow discharge plasma move between dust
particles to provide for their charging and screening. The
plasma parameters typical of glow discharge are as follows:
the ion concentration Ni�108 cm−3, the ion temperature Ti
�0.05 eV, and the electron temperature Te�2 eV. In these
conditions, the screening radius is defined by ions and its
value is Ri=�Ti /4�e2Ni�0.17 mm. The ratio R /Ri�4.2 in-
dicates that the ionic Debye radius is much shorter than the
mean distance between dust particles and, therefore, the
screening of grains by plasma charges is significant.

Here we consider the following relation between different
typical lengths:

a � Ri � R � �i�e�, �2�

where �i�e� is the ion �electron� mean free path. In this ap-
proach ions and electrons move without collisions except at
the grain surface, where absorption takes place. If the in-
equality �i�e��Ri�R is valid, then both electron and ion
transport to the grain is collision dominated. Such a case has

been recently investigated in Refs. �8,9�. Under the experi-
mental conditions considered above, ion transport may be
partially collision driven �R��i�, and electron transport to
the grain is collisionless. In this paper, in the first approxi-
mation we will neglect ion-neutral collision and consider
fully collisionless transport both for electrons and ions. The
collision-dominated regime in ordered dusty system calls for
further investigations.

For ensuring the levitation of dust particles in the experi-
ment, it is further necessary that the force of gravity would
balance the electric force, i.e.,

Mdg = ZeE , �3�

where Md is the grain mass, and E is the component of
electric field strength which is directed along the discharge
axis. Therefore, if the field intensity does not vary, a certain
concentration of dust particles reaches a steady-state value in
the discharge.

We assume that the dust particle radius is a=5 �m and
derive Z�10 000–15 000. The quantity ZNd�4�107 cm−3

makes up for a sizable fraction of the electron concentration.
We find from the condition of electroneutrality

Ni = Ne + ZNd �4�

that Ne�6�107 cm−3, which is much lower than the value
of ion concentration. Here Ne, Ni, and Nd are concentrations
of electrons, ions, and grains averaged over the dusty cloud.

Note further that, despite the relatively high temperature
of translational motion of �5 eV, the velocity of thermal
motion of grains remains very low ��1 cm /s or less� be-
cause of the large mass �Md�5�10−10 g�. Therefore, grains
are stationary sources of charge losses with respect to ther-
mal motion of plasma electrons and ions.

III. MODEL OF ORDERED STRUCTURES OF DUST
GRAINS

The problem is formulated as follows. We consider a
small individual charged grain immersed in isotropic plasma
and surrounded by spherical layers containing other grains.
Every layer is at a distance Ri=R�i from the central grain
and contains mi dusty grains whose charge is uniformly dis-
tributed on a spherical surface of radius Ri. The central grain
forms a nonuniformly charged cloud �spherical symmetric on
the average� around itself. This cloud is characterized by a
self-consistent potential �.

Let us assume that grains form a structure similar to that
of face-centered crystal �“dust crystal”�. In this case, a layer
of 12 nearest neighbors surrounds the initially selected grain
of charge Z. Then this is followed by the second layer
formed by six particles at distance R�2, the third layer of 24
particles at distance R�3, and so on. Table I gives the dis-
tances from the origin particle ri=R�i and the respective
coordination numbers for the face-centered crystal.

If the dust particles form a liquidlike structure �“dust liq-
uid”�, the number of nearest neighbors in the layers becomes
somewhat smaller than that for ideal crystal because of the
formation of vacancies and other structural defects. Accord-
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FIG. 1. Symbols correspond to the correlation function mea-
sured in this paper �Nd=4000 cm−3�. Solid line is the calculation
according to Eq. �37�.
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ing to the data of Ref. �10�, this number in the first coordi-
nation sphere is 10.5 instead of 12, in the second coordina-
tion sphere is �5.5, and in the third sphere is 22. Table I
gives coordination numbers for the liquid state for the first
three coordination spheres. In the case of long distances, the
layers are mixed because of the thermal motion and the so-
called structural diffusion �11�, the order is lost, and the dust
particles are distributed uniformly. In this case, the number
of particles in the spherical layer from R�i until R�i to
R�i+1 is determined as

mi = 4�R3i��i + 1 − �i�Nd � 2��2i . �5�

We follow Frenkel �11� and represent the dust particle distri-
bution function as

��r� =
1

4�r2�
i

gi�r� . �6�

For an ideal crystal, the sum of 	 functions gi�r�=mi	�r
−ri� is under the summation sign in Eq. �6�. In the general
case, the function introduced above may be determined as
the sum of a series of Gaussian functions

gi�r� =
mi

�2�D
exp	−

�r − ri�2

2D

 . �7�

The dispersion D=DT+DS characterizes the mean-square de-
viations of particles from the equilibrium position, which
occur due to thermal motion �DT� and structure defects �DS�.
We write the part of dispersion associated with thermal mo-
tion as DT=T /k, where k is the coefficient of rigidity. The
structure defect part of dispersion DS is connected with an
increase of statistical scattering of particle position distribu-
tion due to the lack of long order for liquid. This value in-
creases proportionally to the square root of the mean distance
of the respective layer from the central grain, i.e., DS=2Sri,
where S is some constant which has the dimension of length.

As r increases, the spacing between neighboring layers
become narrower and the width of the layers increases;
therefore, a permanent “background” of �=Nd is finally
formed that corresponds to the average concentration of dust
particles. Below we will use Eq. �6� with the 	 function for
the first and several following layers; for the subsequent lay-
ers, we will assume the distribution to be uniform.

IV. CHARGING OF GRAINS

In our approach, ions and electrons are assumed to move
without collisions, except at the grain surface where absorp-
tion takes place. Since the average distance between the

grains is sufficiently large in the sense that other dusty grains
do not affect the motion of electrons and ions in the vicinity
of a separate grain, the orbit motion limited �OML� approxi-
mation with Havnes parameter �1,2� is applicable. The
charge of grains Z and electron �Ie� and ion �Ii� fluxes to the
particle surface can be estimates from the expressions

Ii = �8�a2Ni�Ti

M
	1 +

e2Z

Tia

 ,

Ie = �8�a2Ni	1 −
ZNd

Ni

�Te

m
exp	−

Ze2

Tea

 ,

Ii = Ie = I , �8�

where Z is the absolute value of the grain charge and a is the
grain radius, m and M denote the mass of electron and ion,
respectively. From Eq. �8�, one can readily obtain the corre-
lation between the density of grains and their charge

Nd =
Ni

Z
�1 − eZe2/aTe	 mTi

MTe

1/2	1 +

Ze2

aTi

� �9�

The charge of grains decreases with increasing grain con-
centration. For fixed values of Te, Ti, M, Z, and a, the dust
concentration is proportional to the ion concentration. If the
ion density does not vary, a variation of the density of dust
particles is accompanied by a variation of their charge.

V. DISTRIBUTION OF CHARGE PARTICLES
AND SELF-CONSISTENT FIELD AROUND A GRAIN

We consider the density distribution of electrons ne�r� and
ions ni�r� relative to the initially selected grain at the origin
surrounded by spherical layers. Every grain acts as a plasma
sink by absorbing ions and electrons. This implies that
plasma compensation occurs far from the grain, i.e., the char-
acteristic ionization �recombination� length is considerably
larger than the length scale under consideration. Within these
assumptions, the dusty grain absorbs ion and electron fluxes.
In this approach, ion density distribution is described by the
expressions calculated in Ref. �12�,

ni�r� = Ni 2
��

�− �/Ti + exp�− �/Ti�

��1 − erf��− �/Ti��� for r 
 a ,

TABLE I. The distances from the origin particle ri=R�i and the respective coordination numbers for the face-centered crystal.

Number of layer, i 1 2 3 4 5 6 7 8 9 10 11 12 13

Distance, ri 1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13

Crystal, mi 12 6 24 12 24 8 48 6 36 24 24 24 72

Liquid, mi 10.5 5.5 22 — — — — — — — — — —
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ni�r� =
Ni

2  2
��

�− �/Ti + exp�− �/Ti�

��1 − erf��− �/Ti��� for r → a , �10�

where erf�x� is the probability integral and � is the self-
consistent potential. Note that the electron distribution tends
to a Boltzman distribution. Expressions �10� are supple-
mented by the Poisson equation

1

r2

d

dr
	r2d�

dr

 = − 4�e�ne�r� − ni�r� − Z��r�� , �11�

where

��r� = �
s

ms	�r − Rs�
4�r2

for small r and �=Nd for large r.
It is useful to introduce dimensionless variables x=r /R,

z=Ze2 /RTi, �=e� /zTi, and the following shorthand nota-
tions: 	=Ne /Ni, �=Ti /Te, and =R /Ri. We rewrite Eq. �11�
with the following dimensionless variables and notations:

�� +
2

x
�� =

2

z
���z�� − 	e−�z�� , �12�

where ��t�=�1�t� if r
a and ��t�=�1�t� /2 if r→a. The
function �1�t� is determined as

�1�t� =
2���t�

��
+ e��1 − erf����t��� .

In a linear approximation with respect to � �e��1+��, Eq.
�12� has the form

�� +
2

x
�� − 2�1 + 	��� = 21 − 	

z
for r 
 a �13�

and

�� +
2

x
�� − 2�1/2 + 	��� = 21/2 − 	

z
for r → a .

�14�

The quantity 	� accounts for the importance of electrons in
regards to screening in nonisothermal plasma. Under the
conditions of glow discharge, this quantity is small and we
will neglect it in the following considerations.

VI. SOLUTION OF THE POISSON EQUATION

Let us first find the solution for the case where a dust
particle of charge Z is surrounded by concentric spheres of
radii R�i, on which the charge Zmi is distributed uniformly.
Plasma electrons and ions move freely between these
spheres. “Jumps” of charges by Zmi arise on the layer bound-
aries.

Because the particle radius is small �a�R�, the boundary
condition at r→0 has the form

���r��r→0 = −
Ze

r
. �15�

In dimensionless variables, Eq. �15� is simplified and takes
the form

���x��x→0 =
1

x
. �16�

The solution of Eqs. �13� and �14� may be represented as

� = �c + � , �17�

where �c and � denote the constant and variable components
of potential, respectively. The constant component arises be-
cause of a violation of the charge symmetry caused by the
presence of an appreciable amount of dust grains, Ne�Ni,
and Eq. �13� permits a solution �c=const and

�c = −
1 − 	

z
= −

4��2

2 . �18�

When Eqs. �3� are used, the respective dimensional potential
has the form

�c = −
TiZNd

eNi
= −

Ti

e
�1 − eZe2/aTe	 mTi

MTe

1/2	1 +

Ze2

aTi

� .

�19�

Hence it follows that the constant component of the self-
consistent potential does not exceed the ion temperature. It is
zero for an isolated grain and approaches a value of −Ti /e
with an increase in the concentration of grains and a decrease
in their charge.

Equation �14� is valid near the grain, and its solution
when 	�1 has the form ��1 /x+1 /z, while the solution of
Eq. �13� is −1 /x− �1 /	� /z. Near the grain, the value 1 /x
�R /a
1, whereas the values of 1 /z and �1−	� /z are re-
stricted. So, the difference between these solutions can be
neglected. Below we will construct a solution of Eq. �13�.

We will now find the variable component. The peculiarity
of the problem lies in the presence of spherical layers, in
which a jump of the charge occurs. In so doing, the potential
must remain continuous.

We will consider the first layer 0�x�1. The solution for
the potential will be sought in the form

�0�x� =
1

x
�Aex + Be−x� . �20�

The constant B is found from the condition that the potential
must follow the Coulomb form at x→0, i.e., ��x�→1 /x.
Hence it directly follows that

B = 1 − A . �21�

The charge corresponding to Eq. �20� is found from the re-
lation

z0�x� = − r2d�0

dx
= − Aex�x − 1� + Be−x�x + 1� . �22�

In the next layer 1�x��2, we will seek the solution in the
form
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�1�x� = A1ex + B1e−x, �23�

z1�x� = − A1ex�x − 1� + B1e−x�x + 1� . �24�

The boundary conditions have the form

�0�1� = �1�1�, z0�1� + m1 = z1�1� , �25�

where m1 is the charge jump during the passage through a
layer.

From conditions �30� and �32�–�34�, we find that

A1 = A −
n1e−

2
, �26�

B1 = B +
n1e

2
. �27�

The solutions for the subsequent layers are constructed
similarly. One can readily demonstrate that the coefficients
Ai and Bi, which define the solution in the ith layer, are
related to the coefficients Ai−1 and Bi−1 by the recursive for-
mula

Ai = Ai−1 −
nie

−�i

2�i
, �28�

Bi = Bi−1 +
nie

�i

2�i
. �29�

Equations �26� and �27� yield

An = A − Fn
−, �30�

Bn = 1 − A + Fn
+, �31�

where

Fn
− =

1

2
�
i=1

n
nie

−�i

�i
, Fn

+ =
1

2
�
i=1

n
nie

�i

�i
. �32�

We will further assume that, at x��N, the particles are dis-
tributed uniformly. In this case, a constant term ZNd appears
on the right-hand side of Eq. �11�, and the left-hand side of
Eq. �13� must be zero. The solution has the Debye form

�̃ = CNe−x/x . �33�

The constant CN is found from the condition �̃��N�
=�N��N�, which leads to the value

CN = ANe2�N + BN − 4��2Ne�N/2. �34�

The procedure for the calculation of the constant A will be
described below.

Figures 2�a�, 2�b�, 3�a�, and 3�b� give �a� the potential
��x� and �b� the charge z�x� as functions of distance x for
three values of the parameter  �Fig. 2�a��. In Figs. 2�a� and
2�b�, the charge jumps in the first nine layers were taken in
accordance with Table I, i.e., as in the case of the ideal crys-
tal. It was further assumed that the charge was distributed
uniformly. The charge jumps in Figs. 3�a� and 3�b� were

taken into account in the first four layers in accordance with
Table I for the liquid. The lines in Figs. 2�a� and 3�a� corre-
spond to �1� =8, �2� 4.25, and �3� 2.

In both cases, the potential derivative experiences a dis-
continuity at the boundary between layers, which is associ-
ated with the charge jump at this boundary. This discontinu-
ity is the consequence of the assumption regarding “jumps”
of charges arising on the layer boundaries. The potential de-
rivative will be smoother if we take into account the discrete-
ness of the charges distributed on a spherical surface.

Upon transition to uniform distribution, these kinks cease,
and the potential approaches zero smoothly. With the proviso
that �1, the distribution of potential � between layers de-
pends rather weakly on the parameter . The charge distri-
bution is almost independent of the parameter ; therefore,
Figs. 2�b� and 3�b� show a graph only for =4.25. The graph
begins with the value of z=1, which corresponds to the di-
mensionless charge of the particle at the origin. As x in-
creases, this charge is screened by plasma ions and changes
sign to negative. At point x=1, the charge jumps by 12. Then

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-20

-10

0

10

20

R
wz

z(
x)

x

(a)

(b)

FIG. 2. �Color online� The dependence of the potential �a�
��x�=��x�−4��2 /2 and charge �b� on the dimensionless distance
x for the crystal-like structure, following from the solution of
Poisson-Boltzman equation when nine layers of dust particles are
taken into account. The values of mi for the first nine layers were
taken from Table I for solid state and for consequent layers were
calculated according to Eq. �6�. Line 1 in Fig. 1�a� corresponds to
the value of =8, 2–4.25, 3–2.5.
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the pattern repeats, and at point x=�2 the charge increases
by six, and so on. When the distribution becomes uniform,
the jumps cease, and the charge decreases smoothly.

We can see that the potential � in the space between the
grain and first layer of the nearest neighbors changes sign
and reaches a minimum �maximum with regard to the grain
charge�. Its value with regard to the grain sign at the point of
the maximum is positive and equal to about 0.5. As it follows
from Fig. 2, the deviation from the Boltzman law is not great
yet at such positive values of the self-consistent potential.

VII. CONFINEMENT POTENTIAL

Note that the distance at which the charge is fully
screened for the first time, and the potential has a minimum,
coincides with the size of Wigner-Seitz cell RWZ
= �3 /4��1/3�1 /Nd

1/3�=0.62 /Nd
1/3. Figure 4 gives the value of

potential at the cell boundary ��RWZ� as a function of param-
eter . Also given in this figure is the potential −�c �dashed
line�. At �1, the potential ��RWZ��−�c. In the case of

high values of, the inequality ��RWZ��−�c is valid.
We will treat a dust system as a set of Wigner-Seitz cells.

In this case, the boundary layer of such a system must con-
sist of positive ions. For these ions not to be displaced, the
entire system must be located in a potential trap formed by
negative charges. The trap potential �s must exceed in mag-
nitude at least the potential on the boundary of the Wigner-
Seitz cell, i.e., �s��WZ. One can further use the theory of
restricted orbital motion to estimate the wall potential, if
Ze /a in the formulas of this theory is formally replaced by
�s, where �s is the wall potential. Then Eq. �12� yields,
within a geometric factor on the order of unity, the condition
of confinement of dust plasma in the form

e�s � Ze2/a � �WZ. �35�

Figure 5 gives a qualitative pattern of distribution of poten-
tials at the wall which bounds the volume with dust plasma.
Inequality �35� may be rewritten as

R

Ri
� 	4��2aTi

Ze2 
1/2

. �36�

For the plasma parameters under consideration, this is
equivalent to R /Ri�1. Therefore, for the confinement of
dust plasma, it is required that the mean distance between
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FIG. 3. �Color online� The same as Fig. 2 for liquidlike struc-
ture. The values of mi for first three layers were taken from Table I
for liquid state and for consequent layers were calculated according
to Eq. �6�.

FIG. 4. The dependence of the potential on the boundary of
Wigner-Seitz cell on the parameter  �line 1�; the dotted line is the
potential −�c.

FIG. 5. The qualitative picture of the potential distribution near
the dusty boundary: �s is the wall potential, �WZ is the potential on
the boundary of Wigner-Seitz cell.
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dust particles would exceed the ionic Debye radius, i.e., the
screening of dust charges by plasma charges must be signifi-
cant.

VIII. CORRELATION FUNCTION

In the approximation under consideration, dust particles
interact directly with plasma electrons and ions. As to the
interaction of dust particles with one another, it may be re-
duced to the effect of some self-consistent field on each one
of these particles. This field is, on the average, isotropic, i.e.,
it exhibits spherical symmetry. To find this field, we subtract
the potential of the central dust particle in consideration of
screening from the self-consistent potential found above, i.e.,
we will consider the quantity

e�̃�r� = e��r� − e2Ze−r/Rr�1 + r/Ri�/r . �37�

In the case of low values of r, the potential �̃�r�→−�c and
becomes negative. It oscillates with increasing r and, in the
case of high values of r, asymptotes to zero. The probability
of finding a dust particle at a distance r from the origin of
coordinates, i.e., the correlation function, may be written as

G�r� = exp�− e�̃�r�/Tir� . �38�

The ion temperature is used in Eq. �38� because it is the main
component which forms the self-consistent field, and the dy-
namics of screening of dust particles are defined by the ve-
locity of motion of ions. We make a transition to dimension-
less variables and can rewrite Eq. �46� as

G�x,,z� = exp�z���x,� − e−x�1 + x�/x�� . �39�

This correlation function depends, in addition to distance, on
two dimensionless parameters  and z. The function for liq-
uidlike dust structure, calculated by Eq. �39�, is shown in
Fig. 1 as a continuous line. The following values of param-
eters are used: Z=10 000, Ti=0.05 eV, Ri=0.017 cm, and
R=0.074 cm. The calculated function reproduces the first
maximum of the experimentally obtained function fairly
well. The subsequent maxima of the calculated correlation
function are located at somewhat shorter distances than the
measured ones. This is indicative of the difference between
the experimentally realized real dust structure and the as-
sumed structure used in the calculation. Qualitatively, the
calculation results reproduce all of the characteristic features
of the measured correlation function quite adequately. In ad-
dition, the method under consideration allows varying the
coordination numbers and distances between layers for better
agreement with the experimental data.

Formula �39� yields the expression for the first maximum
of the correlation function, which may be conveniently writ-
ten as

ln Gm =
Ze2

TiRi
��� , �40�

where

��� = A�e − e−� −
4��2

2 − e−. �41�

In the 3��9 range, the function ��� varies only slightly
and is ����0.41. This enables one to find the charge of
dust particles from Eq. �40� from the value of correlation
function in the first maximum. It follows from the experi-
mental graph of Fig. 1 that ln Gm�0.64. We assume that
Ti=0.05 eV and Ri=0.017 cm to obtain Z�92000. This
value agrees rather well with that obtained using the theory
of restricted orbital motion �Z�98000�.

IX. INTERACTION ENERGY

We follow �13� and present the energy of interaction of
dust particle with electrons and ions per unit volume in the
form

U = 2�Nd�
0

�

r2dr�Ne0VdeGde + Ni0VdiGdi� , �42�

where Vde=Ze2 /r and Vdi=−Ze2 /r are the potentials of inter-
action of dust particle with electron and ion, respectively. In
Eq. �42�, Gde and Gdi are the respective correlation functions
which have the form

Gde = exp	 e�

Te

 − 1, Gdi = exp	− e�

Ti

 − 1. �43�

We substitute Eq. �43� into Eq. �42� and make a transition to
dimensionless variables in the linear �with respect to �� ap-
proximation to derive

U = −
2�e4Z2NdNioR

Ti
u�R/Ri� , �44�

u = �
0

�

��1 + 	��xdx � �
0

�

�� + �c�xdx . �45�

If we assume in Eq. �42� that Nd=Ni and Z=1, and use the
Debye approximation �=exp�−�r� /r for the correlation ad-
dition, where � is the inverse Debye radius, we obtain the
well-known negative Debye addition to the energy of elec-
tron or ion. The negative sign of this addition is associated
with the fact that unlike charges in plasma are, on average,
located closer to one another than like charges.

For the problem under consideration, integral �45� is cal-
culated analytically. For this purpose, we substitute � into
Eq. �45� in the form �= �1 /2����+ �2 /x����; this form fol-
lows from the Poisson equation for this function. After inte-
gration, we derive

u�� =
1

2 ���x�� + ���0
�N − 2��2N + CNe−�N� . �46�

We use the fact that x��=z�x� /x. The latter function has a
discontinuity of the first kind during transition through each
layer. The value of this discontinuity upon transition through
the ith layer is found from the condition
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− � z�x�
x
�

x→�i−0
+ � z�x�

x
�

x→�i+0
=

ni

�i
. �47�

As a result, the interaction energy may be written as

u�� =
1

2��
i=1

N 	 ni

�i
− 2��2
 +

d

dx
��x���x→0

�N+1 + CNe−�N� .

�48�

The quantity

d

dx
��x���x→0

�N + CNe−�N = T�,N� �49�

may be represented in the form where

T�,N� = 1 + 2A�e�N − 1� − 2e�N�N
− − 4��2N/2.

�50�

If the dust particles are distributed uniformly, the sum in Eq.
�48� goes to zero. The dust particle at the origin is screened
by plasma particles, and the relation u��=1 / leading to an
ordinary Debye correction to the particle energy must be
valid. Therefore, it is necessary to demand that the function
T� ,N�=1. In addition, the result in this case will be inde-
pendent of N. We select the constant A so that this condition
would be valid. Equation �50� gives

A =
2��2N/2 + e�N�N

−

e�N − 1
. �51�

At �1, A�2��2 /3; when the parameter �1, A�FN
−.

The interaction energy given by Eq. �44� assumes the form
typical of ionic crystals �14,15�,

U = −
e2Z2�Nd�2Nd

4/3

2 � 21/6 M , �52�

where

M =  + � , �53�

� = �
i=1

N 	 ni

�i
− 2��2
 �54�

is the effective Madelung parameter.
If the value of parameter  is high, the first term in Eq.

�53� is dominant, and ordinary Debye screening of the cen-
tral dust particle by plasma occurs. In the case of a moderate
value of the parameter , the second term in Eq. �53� be-
comes the principal term. Then the energy of the interaction
of the dust particles �52� has the form of Madelung energy,
i.e., the same as that for a highly correlated classical ionic
system. Function �53� is an analog of the Madelung constant
for a highly correlated system of charged dust particles. For
the emergence of this function, it is necessary that ni /�i
�2��2.

We perform the calculation for crystal-like and liquidlike
dust structures. In the former case, we assume that the
charges ni for the first nine layers are distributed as in a
crystal and, starting with the tenth layer, ni /�i�2��2. Then,

�=�i=1
9 � ni

�i
−2��2�=2.39. This value is close to that of the

Madelung constant for the lattice of sodium chloride equal to
1.747 �15�. The respective quantity u�� is u��= �2.39
+� /2.

In the latter case, we assume that the charges Zi for the
first three layers are distributed as in a liquid �see Table I�
and, starting with the fourth layer, ni /�i�2��2. The quan-
tities � and u�� are equal to �=�i=1

3 � ni
�i

−2��2�=0.933 and
u��= �0.933+� /2, respectively.

The peculiarity of dust plasma is that the charge Z is not
an independent parameter, but decreases with increasing den-
sity of dust particles �see Eq. �9��.

Equations �52� and �9� define the dependence U�Nd� in
parametric form. The inclusion of the density dependence of
charge brings about the emergence of a minimum for the
potential curve and of a branch corresponding to the increase
in potential with density. In what follows, the calculations
are performed for fixed values of parameters typical of glow
discharge: Te=2 eV, Ti=0.05 eV, Ni=108 cm−3, a=5 �m,
and M =1837*41 �ionic mass of argon�. For these values of
parameters, the potential at the minimum for a liquidlike
structure per particle is as high as Um=475 eV, and the den-
sity of dust particles is Nm=500 cm−3. Note that the energy
at the minimum coincides in the order of magnitude with the
energy of interaction of dust particles with Z�15 000 at an
average distance R�0.07 mm. Indeed, in this case e2Z2 /R
�440 eV.

In what follows, it is convenient to introduce dimension-
less units for energy and specific volume U�=U /NdUm and
v=Nm /Nd. The potential energies for liquid and crystal in
these dimensionless variables are given in Fig. 6. These are
typical curves for particle interaction with a minimum, with
a steep branch corresponding to repulsion, and with a slowly
decaying branch corresponding to attraction. As in the case
of ordinary substances, the minimum of curve for crystal is
deeper than that for liquid and is shifted towards smaller
specific volumes.

FIG. 6. �Color online� Two lower lines are the dependencies of
the reduced potentials U�=U /UmNd on the reduced specific volume
v=Nm /Nd for liquid �L� and crystal �S�, respectively. The values are
Um=510 eV and Nm=1000 cm−3. Two upper lines are the same for
the potential contribution for the pressure �p�=�p /UmNm.

VOROB’EV, PETROV, AND FORTOV PHYSICAL REVIEW E 77, 036401 �2008�

036401-8



X. DISCUSSION

The pressure decrease corresponding to potential �52� is
obtained as a result of differentiation of energy with respect
to volume �p=−�U /�V. Because potential energy indepen-
dent of the system volume makes no contribution to pres-
sure, we have

�p = −
Z2e2Nd

4/3

3 � 27/6 	� +
6Nd

Z

�Z

�Nd
�� + �
 . �55�

The reduced pressures for liquid and crystal �p�
=�p /EmNm, calculated from Eq. �55� for �=0.933 and 2.39,
are given in Fig. 6. As it would be expected, the pressure
goes to zero at the point of the minimum of potential.

To the negative pressure, we add the contribution of the
thermal part in the Van der Waals form �14� to derive the
equation of state for a highly correlated dust system,

p =
NdT

1 − 4NdV
−

Z2e2Nd
4/3

27/6 � 3
	� +

6Nd

Z

�Z

�Nd
�� + �
 . �56�

The quantity 4V in Eq. �53� corresponds to quadruplicate
excluded volume. It is natural to take the particle volume
fraction as this volume. In this case, 4V=16�a3 /3�1.7
�10−10 cm3. The dust concentration at the minimum of po-
tential is Nm=500 cm−3; therefore, the correction
16�a3Nm /3�3�10−6 is insignificant.

Let the temperature and concentration of dust particles be
thermodynamic variables �the charge is a function of concen-
tration�. The rest of the parameters, which characterize the
state of the plasma, remain constant. The question as to how
this situation may be realized experimentally calls for special
discussion. In this case, Eq. �56� may be used to estimate the
critical point parameters. The regular procedure of determin-
ing the critical parameters, which consists of solving Eq. �56�
along with conditions dp /dNd=d2p /dNd

2=0, leads to the
equations

−
��p

�Nd
4VNd =

�2�p

�Nd
2 �1 − 4VNd�Nd, �57�

Tc = −
��p

�Nd
�1 − 4VNd� . �58�

The first of these equations defines the critical density, and
the second one—the critical temperature. Because 4VNd�1,
the critical density is determined by the inflection point of
the density dependence of the potential part of pressure, i.e.,
from the condition ��2�p /�Nd

2��Nd=Nc=0. Then the critical
temperature is found as Tc= ���p /�Nd��Nd=Nc=0. Plotted in
Fig. 7 are dimensionless isotherms of pressure according to
Eq. �56� at �=0.933 �dust liquid�. The temperature Tc
=0.0675 corresponds to the critical isotherm or, in dimen-
sional units, Tc�34 eV. The critical density is Nc�10 or, in
dimensional units, Nc�100 cm−3. The dimensionless pres-

sure at the critical point is very low, pc�0.001. The charge
of dust particles and the compressibility factor at the critical
point are Zc�18 940 and �= pc /Tcnc�0.23. The isotherm at
higher temperature is monotonic; at lower temperature, it has
a minimum and a maximum. These critical parameters differ
appreciably from those estimated in �16� using model pair
potentials.

The estimated critical parameters lead one to conclude
that the critical mode may be realized for a very rarefied dust
system, where the mean distance between dust particles may
be equal to fractions of a centimeter, i.e., 
1. The positive
potential at the boundary of Wigner-Seitz cell becomes very
low and, consequently, the potential required for confinement
of such plasma also becomes very low. However, it is diffi-
cult to observe the peculiarities in the critical behavior of
dust plasma under laboratory conditions, because the con-
finement volume will contain too few dust particles. The
situation becomes more favorable under microgravity condi-
tions. In the majority of experiments, the dust temperature is
lower than critical, and the density is much higher than criti-
cal. To draw an analogy with ordinary substances, one can
maintain that the state of dust plasma under laboratory con-
ditions corresponds to the subcritical solid, liquid, or amor-
phous states. In this case the liquid-solid phase transition is
possible. This fact is confirmed by many experimental obser-
vations.
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FIG. 7. �Color online� The isotherms according to Eq. �56� at
different values of temperature. T=0.0675 correspond to the critical
temperature.
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